论文标题

嘴唇集的表征

Characterization of lip sets

论文作者

Buczolich, Zoltán, Hanson, Bruce, Maga, Balázs, Vértesy, Gáspár

论文摘要

我们用$ {\ Mathbb r} \ to {{\ Mathbb r}} $ by $ {\ Mathrm {lip}} f $。在函数$ f的函数$ f:{\ mathbb r} \ to {{\ mathbb r}} $中表示本地的``小'lipschitz常数''表示本地``小lipschitz''表示本地的``小lipschitz''来表示本地``\ {\ mathrm {lip}} f $。在本文中解决以下问题: $ f $使$ {\ mathrm {lip}} f = \ mathbf {1} _e $? 在较早的论文中,我们介绍了强烈的单面密集集的概念。我们的主要结果是$ {\ mathrm {lip}} 1 $设置为闭合集合的可数工会,它们是强烈的单向密集的。 我们还表明,更强有力的语句不是正确的,即有强烈的单面密集$ f_σ$集,而不是$ {\ mathrm {lip}} 1 $。

We denote the local ``little" Lipschitz constant of a function $f: {\mathbb R}\to { {\mathbb R}}$ by $ {\mathrm{lip}}f$. In this paper we settle the following question: For which sets $E {\subset} { {\mathbb R}}$ is it possible to find a continuous function $f$ such that $ {\mathrm{lip}}f=\mathbf{1} _E$? In an earlier paper we introduced the concept of strongly one-sided dense sets. Our main result characterizes $ {\mathrm{lip}}1$ sets as countable unions of closed sets which are strongly one-sided dense. We also show that a stronger statement is not true i.e. there are strongly one-sided dense $F _σ$ sets which are not $ {\mathrm{lip}}1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源