论文标题

$(\ Mathbb {p}^2,e)$和nekrasov-shatashvili local $ \ mathbb {p}^2 $的hokrasov-shatashvili限制的holomorphic异常方程

Holomorphic anomaly equation for $(\mathbb{P}^2,E)$ and the Nekrasov-Shatashvili limit of local $\mathbb{P}^2$

论文作者

Bousseau, Pierrick, Fan, Honglu, Guo, Shuai, Wu, Longting

论文摘要

We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with $X$ a smooth projective variety and $D$ a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $λ_g$-insertion is related to Gromov-Witten theory of the total space of $ \ MATHCAL {O} _X(-D)$和$ d $的本地Gromov-Witten理论。 专门针对$(x,d)=(s,e)$ for $ s $ a del pezzo表面或有理椭圆形的表面和$ e $ a $ a a a $平滑的反典型分隔线,我们表明,$(s,e)$的最大接触gromov-witten理论是由gromov-witter of gromov-witter of gromov-witter of calabi-yau 3-fold $ $ \ s的calabi-yau-yntercal and cally-n cally-n call and call and cally-n call and call cally-n call and call of)椭圆曲线$ e $的理论。 进一步专注于$ s = \ mathbb {p}^2 $,我们证明,更高的属生成了$(\ mathbb {p}^2,e)$的一系列最大触点gromov-witten不变性,是quasimimodular且满足荷兰型静态态度。该证明结合了准地模性结果和先前以局部$ \ mathbb {p}^2 $和椭圆曲线而闻名的全体形态异常方程。 Furthermore, using the connection between maximal contact Gromov-Witten invariants of $(\mathbb{P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on $\mathbb{P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string nekrasov-shatashvili限制中本地$ \ mathbb {p}^2 $的自由能。

We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with $X$ a smooth projective variety and $D$ a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $λ_g$-insertion is related to Gromov-Witten theory of the total space of $\mathcal{O}_X(-D)$ and local Gromov-Witten theory of $D$. Specializing to $(X,D)=(S,E)$ for $S$ a del Pezzo surface or a rational elliptic surface and $E$ a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold $\mathcal{O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve $E$. Specializing further to $S=\mathbb{P}^2$, we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $(\mathbb{P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local $\mathbb{P}^2$ and the elliptic curve. Furthermore, using the connection between maximal contact Gromov-Witten invariants of $(\mathbb{P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on $\mathbb{P}^2$, we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local $\mathbb{P}^2$ in the Nekrasov-Shatashvili limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源