论文标题

双重稀疏的变分高斯工艺

Doubly Sparse Variational Gaussian Processes

论文作者

Adam, Vincent, Eleftheriadis, Stefanos, Durrande, Nicolas, Artemev, Artem, Hensman, James

论文摘要

高斯工艺模型的使用通常仅限于数据集,其复杂性和记忆足迹,其观察值数万个。克服该限制的两种最常用的方法是1)依赖于诱导点的变异稀疏近似和2)状态空间的等效表述高斯过程,这可以看作是利用精度矩阵中的一些稀疏性。我们建议竭尽所能:我们证明诱导点框架对于状态空间模型仍然有效,并且可以带来进一步的计算和内存节省。此外,我们为提出的变分参数化提供了自然梯度公式。最后,这项工作使得在其中一个实验中所示的深高斯过程模型中使用状态空间公式是可能的。

The use of Gaussian process models is typically limited to datasets with a few tens of thousands of observations due to their complexity and memory footprint. The two most commonly used methods to overcome this limitation are 1) the variational sparse approximation which relies on inducing points and 2) the state-space equivalent formulation of Gaussian processes which can be seen as exploiting some sparsity in the precision matrix. We propose to take the best of both worlds: we show that the inducing point framework is still valid for state space models and that it can bring further computational and memory savings. Furthermore, we provide the natural gradient formulation for the proposed variational parameterisation. Finally, this work makes it possible to use the state-space formulation inside deep Gaussian process models as illustrated in one of the experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源