论文标题

伪量子电动力学和Chern-Simons理论耦合到二维电子

Pseudo Quantum Electrodynamics and Chern-Simons theory Coupled to Two-dimensional Electrons

论文作者

Magalhães, Gabriel C., Alves, Van S., Marino, Eduardo C., Nascimento, Leandro O.

论文摘要

我们研究了一种非局部理论,该理论结合了二维电子中伪量子电动力学(PQED)和Chern-Simons的作用。在静态限制中,我们得出结论,这两种相互作用的竞争产生了库仑电势,并以$ e^2/(1+θ^2)$给出的筛选电荷,其中$θ$是无尺寸的Chern-Simons参数。这对于描述与二维材料的底物相互作用以及石墨烯中介电常数的掺杂依赖性可能很有用。在动态极限中,我们计算考虑狄拉克电子的模型的有效电流作用。我们表明,这类似于电磁和统计相互作用,但具有两个不同的总体常数,由$ e^2/(1+θ^2)$和$ e^2θ/(1+θ^2)$给出。因此,$θ$ - 参数不能为PQED中的量规场提供拓扑质量,这与量子电动力学相比是相关的差异。此后,我们在我们的模型中应用了一环扰动理论。在这种方法中,我们使用重新归一化组计算电子自能力,电子重新归一化的质量,校正的量规传播器和重新归一化的费米速度。特别是,我们以$θ\约0.36 $的价格获得了重新归一化质量的最大值。该行为是模型的重要签名,并且在结论中还讨论了与带隙大小的兴奋剂控制的关系。

We study a nonlocal theory that combines both the Pseudo quantum electrodynamics (PQED) and Chern-Simons actions among two-dimensional electrons. In the static limit, we conclude that the competition of these two interactions yields a Coulomb potential with a screened electric charge given by $e^2/(1+θ^2)$, where $θ$ is the dimensionless Chern-Simons parameter. This could be useful for describing the substrate interaction with two-dimensional materials and the doping dependence of the dielectric constant in graphene. In the dynamical limit, we calculate the effective current-current action of the model considering Dirac electrons. We show that this resembles the electromagnetic and statistical interactions, but with two different overall constants, given by $e^2/(1+θ^2)$ and $e^2θ/(1+θ^2)$. Therefore, the $θ$-parameter does not provide a topological mass for the Gauge field in PQED, which is a relevant difference in comparison with quantum electrodynamics. Thereafter, we apply the one-loop perturbation theory in our model. Within this approach, we calculate the electron self-energy, the electron renormalized mass, the corrected gauge-field propagator, and the renormalized Fermi velocity for both high- and low-speed limits, using the renormalization group. In particular, we obtain a maximum value of the renormalized mass for $θ\approx 0.36$. This behavior is an important signature of the model and relations with doping control of band gap size are also discussed in the conclusions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源