论文标题
表面和圆的乘积的Kauffman绞线模块的基础
A basis for the Kauffman skein module of the product of a surface and a circle
论文作者
论文摘要
3个manifold $ m $的Kauffman支架绞线模块$ s(m)$是$ \ mathbb {q}(a)$ - $ m $ modulo跨越所谓的kauffman关系。在本文中,对于任何封闭的表面$σ$,我们为Skein模块$ s(σ\ times s^1)$提供一个明确的跨度家庭。结合Gilmer和Masbaum的早期工作,我们回答了他们关于$ s(σ\ times s^1)$的尺寸的问题,为$ 2^{2G + 1} + 2G -1 $。
The Kauffman bracket skein module $S(M)$ of a 3-manifold $M$ is a $\mathbb{Q}(A)$-vector space spanned by links in $M$ modulo the so-called Kauffman relations. In this article, for any closed oriented surface $Σ$ we provide an explicit spanning family for the skein modules $S(Σ\times S^1)$. Combined with earlier work of Gilmer and Masbaum, we answer their question about the dimension of $S(Σ\times S^1)$ being $2^{2g+1} + 2g -1$.