论文标题
剩余注意的分割U-NET和边缘增强方法可保留细胞形状特征
Segmentation with Residual Attention U-Net and an Edge-Enhancement Approach Preserves Cell Shape Features
论文作者
论文摘要
在活细胞中推断基因表达动力学的能力需要强大的细胞分割,而挑战之一是无定形或不规则形状的细胞边界。为了解决这个问题,我们将U-NET体系结构修改为荧光广场显微镜图像中的细胞,并定量评估其性能。我们还提出了一种新型的损失函数方法,该方法强调细胞边界上的分割精度并鼓励形状保存。我们提出的称为97%的敏感性,93%的特异性,91%的Jaccard相似性和95%的骰子系数,我们提出的称为“残留注意U-net”的方法超过了传统衡量标准评估的细分性能中的最先进的U-NET。更值得注意的是,同一提出的候选人在保存有价值的形状特征,即区域,怪异,主要轴长,坚固和方向方面也表现出了最好的作用。这些对形状特征保存的改进可以用作有用的资产,用于下游细胞跟踪,并量化细胞统计的变化或随着时间的推移特征的变化。
The ability to extrapolate gene expression dynamics in living single cells requires robust cell segmentation, and one of the challenges is the amorphous or irregularly shaped cell boundaries. To address this issue, we modified the U-Net architecture to segment cells in fluorescence widefield microscopy images and quantitatively evaluated its performance. We also proposed a novel loss function approach that emphasizes the segmentation accuracy on cell boundaries and encourages shape feature preservation. With a 97% sensitivity, 93% specificity, 91% Jaccard similarity, and 95% Dice coefficient, our proposed method called Residual Attention U-Net with edge-enhancement surpassed the state-of-the-art U-Net in segmentation performance as evaluated by the traditional metrics. More remarkably, the same proposed candidate also performed the best in terms of the preservation of valuable shape features, namely area, eccentricity, major axis length, solidity and orientation. These improvements on shape feature preservation can serve as useful assets for downstream cell tracking and quantification of changes in cell statistics or features over time.