论文标题
指数量子通信从布尔隐藏匹配问题的概括中减少
Exponential quantum communication reductions from generalizations of the Boolean Hidden Matching problem
论文作者
论文摘要
在这项工作中,我们重新审视了布尔隐藏匹配的通信问题,这是单向模型中第一个证明指数经典量子通信分离的通信问题。在这个问题中,根据鲍勃所持的分区,爱丽丝的碎片成对成对。这些对使用奇偶校验函数进行压缩,并保证最终的位串等于另一个串线的鲍勃保持,或者其补充。问题是确定哪种情况是正确的。在这里,我们通过用任意的布尔函数$ f $替换奇偶校验功能来概括布尔隐藏的匹配问题。根据$ f $的签名度,提出了有效的通信协议。如果其签名度小于或等于1,我们将显示一个有效的经典协议。如果其签名度小于或等于$ 2 $,我们将显示有效的量子协议。然后,我们完全表征了所有对称功能的经典硬度,大于或等于$ 2 $,除了一个特定案例家族外,签名学位的$ f $。通过傅立叶分析,我们还证明了任何功能$ f $的经典下限,其纯高学位大于或等于$ 2 $。同样,我们也通过傅立叶分析证明,纯高学位大于或等于$ 3 $的任何功能$ f $的量子下限。这些结果为大量的新指数古典量子沟通分离提供了大量的家庭。
In this work we revisit the Boolean Hidden Matching communication problem, which was the first communication problem in the one-way model to demonstrate an exponential classical-quantum communication separation. In this problem, Alice's bits are matched into pairs according to a partition that Bob holds. These pairs are compressed using a Parity function and it is promised that the final bit-string is equal either to another bit-string Bob holds, or its complement. The problem is to decide which case is the correct one. Here we generalize the Boolean Hidden Matching problem by replacing the parity function with an arbitrary Boolean function $f$. Efficient communication protocols are presented depending on the sign-degree of $f$. If its sign-degree is less than or equal to 1, we show an efficient classical protocol. If its sign-degree is less than or equal to $2$, we show an efficient quantum protocol. We then completely characterize the classical hardness of all symmetric functions $f$ of sign-degree greater than or equal to $2$, except for one family of specific cases. We also prove, via Fourier analysis, a classical lower bound for any function $f$ whose pure high degree is greater than or equal to $2$. Similarly, we prove, also via Fourier analysis, a quantum lower bound for any function $f$ whose pure high degree is greater than or equal to $3$. These results give a large family of new exponential classical-quantum communication separations.