论文标题
关于Euler $φ$函数的一组值集的本地结构
On the local structure of the set of values of Euler's $φ$ function
论文作者
论文摘要
假设迪克森(Dickson)的猜想的有效性,我们表明,欧拉(Euler)正常函数$φ$值的集合$ \ mathcal {v} $包含任意大的算术进程,具有共同的差异4。这导致了一个无条件地证明这一点$ \ nathcal \ nathcal \ nathcal {v} $呈阳性banach banach banach denthach denthach d Mentain Mentain Mentain Mentain Mentation。
Assuming the validity of Dickson's conjecture, we show that the set $\mathcal{V}$ of values of the Euler's totient function $φ$ contains arbitrarily large arithmetic progressions with common difference 4. This leads to the question of proving unconditionally that this set $\mathcal{V}$ has a positive upper Banach density.