论文标题

地球流量和所有持续分数的母亲

Geodesic flows and the mother of all continued fractions

论文作者

Merriman, Claire

论文摘要

我们在模块表面$ \ MATHCAL {m} = \ perperatorName {psl}(2,\ Mathbb {z})\ Backslash \ Mathbb {h} $,切割序列,切割序列,并定期使用缓慢收敛的Lehner和Farey Flations $(1)$(1)$(1)$(1)雷纳继续分数。我们还引入了一种替代插入和奇异算法,用于Farey扩展和其他非隔离的持续分数,以及对Farey扩展的替代双重扩展,以便在自然扩展图下,$ \ frac {dxdy} {(1+xy)^2} $是无机的。

We extend the Series' connection between the modular surface $\mathcal{M}=\operatorname{PSL}(2,\mathbb{Z})\backslash\mathbb{H}$, cutting sequences, and regular continued fractions to the slow converging Lehner and Farey continued fractions with digits $(1,+1)$ and $(2,-1)$ in the notation used for the Lehner continued fractions. We also introduce an alternative insertion and singularization algorithm for Farey expansions and other non-semiregular continued fractions, and an alternative dual expansion to the Farey expansions so that $\frac{dxdy}{(1+xy)^2}$ is invariant under the natural extension map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源