论文标题
引力波或义夸克:是什么导致出生于短伽玛射线爆发中的中子星的过早崩溃?
Gravitational waves or deconfined quarks: what causes the premature collapse of neutron stars born in short gamma-ray bursts?
论文作者
论文摘要
我们使用18个短伽玛射线爆发的X射线余潮来推断长寿命中子星的崩溃时间。然后,我们将分层推断用于推断状态和主要旋转机制的中子星方程的性能。我们测量最大的非旋转中子星质量$ m_ \ mathrm {tov} = 2.31 ^{+0.36} _ { - 0.21} m _ {\ odot} $,并限制了残留物的分数,主要是通过重力降低到$η= 0.69 ^0.69 ^= 0.69 ^ ^= 0.69 ^= 0.69 ^= 0.69 ^ ^= 0.69 ^{+++} = 0.69 ^= 0.69 ^ ^{++{++{+{++{+{++{+++{+{+herm \%$不确定性。原则上,此方法可以确定状态的悬念和夸克方程之间的差异。但是,实际上,数据尚未提供信息,表明这些中子恒星在$1σ$级别上的状态不存在HADRONIC方程。这些推论都取决于二进制中子星合并产生的短伽马射线爆发的潜在祖细胞质量分布。最近宣布的GW190425重力波检测表明,这种潜在的分布与当地测量的双中子星人群不同。我们表明,$ m_ \ mathrm {tov} $和$η$约束取决于通过与本地测量人群一致的分布形成的二进制合并的比例,以及可以解释GW190425的分布。从后者分布形成的二进制文件中,较大的$ m_ \ mathrm {tov} $需要满足X射线观测值。我们上面的测量值在这一未知分数上被边缘化。相反,如果我们假设GW190425不是二进制中子星的合并,即双中子星的基本质量分布与本地观察到的相同,我们测量$ m_ \ mathrm {tov} = 2.26 ^{+0.31} _ { - 0.17} _ { - 0.17} m_ _ _ _ {\ odot} $。
We infer the collapse times of long-lived neutron stars into black holes using the X-ray afterglows of 18 short gamma-ray bursts. We then apply hierarchical inference to infer properties of the neutron star equation of state and dominant spin-down mechanism. We measure the maximum non-rotating neutron star mass $M_\mathrm{TOV} = 2.31 ^{+0.36}_{-0.21} M_{\odot}$ and constrain the fraction of remnants spinning down predominantly through gravitational-wave emission to $η= 0.69 ^{+0.21}_{-0.39}$ with $68 \%$ uncertainties. In principle, this method can determine the difference between hadronic and quark equation of states. In practice, however, the data is not yet informative with indications that these neutron stars do not have hadronic equation of states at the $1σ$ level. These inferences all depend on the underlying progenitor mass distribution for short gamma-ray bursts produced by binary neutron star mergers. The recently announced gravitational-wave detection of GW190425 suggests this underlying distribution is different from the locally-measured population of double neutron stars. We show that $M_\mathrm{TOV}$ and $η$ constraints depend on the fraction of binary mergers that form through a distribution consistent with the locally-measured population and a distribution that can explain GW190425. The more binaries that form from the latter distribution, the larger $M_\mathrm{TOV}$ needs to be to satisfy the X-ray observations. Our measurements above are marginalised over this unknown fraction. If instead, we assume GW190425 is not a binary neutron star merger, i.e the underlying mass distribution of double neutron stars is the same as observed locally, we measure $M_\mathrm{TOV} = 2.26 ^{+0.31}_{-0.17} M_{\odot}$.