论文标题

分布合成控制

Distributional synthetic controls

论文作者

Gunsilius, Florian

论文摘要

本文扩展了广泛使用的合成控制估计器,用于评估策略变化对分数功能的因果影响。所提出的方法提供了对处理单元的整个反事实函数的几何忠实估计。它的上诉源于通过受限的定量回归进行有效的实施。这构成了一个新颖的独立兴趣概念。在任何情况下,该方法都提供了独特的反事实函数:用于连续,离散或混合分布。它在重复的横截面和面板数据中运行,只有一个单个预处理期。该文章还通过证明任何合成控制方法(经典或我们的概括)为维护结果分布之间距离的因果模型提供了正确的反事实,从而提供了抽象的识别结果。使用全分位数函数而不是聚合值可以进行反事实和观察到的分布的相等性和随机优势的测试。它可以对诸如平均或分位数治疗效果(例如反事实洛伦兹曲线或四分位间范围)等标准结果(如平均或分位数治疗效应)提供因果推断。

This article extends the widely-used synthetic controls estimator for evaluating causal effects of policy changes to quantile functions. The proposed method provides a geometrically faithful estimate of the entire counterfactual quantile function of the treated unit. Its appeal stems from an efficient implementation via a constrained quantile-on-quantile regression. This constitutes a novel concept of independent interest. The method provides a unique counterfactual quantile function in any scenario: for continuous, discrete or mixed distributions. It operates in both repeated cross-sections and panel data with as little as a single pre-treatment period. The article also provides abstract identification results by showing that any synthetic controls method, classical or our generalization, provides the correct counterfactual for causal models that preserve distances between the outcome distributions. Working with whole quantile functions instead of aggregate values allows for tests of equality and stochastic dominance of the counterfactual- and the observed distribution. It can provide causal inference on standard outcomes like average- or quantile treatment effects, but also more general concepts such as counterfactual Lorenz curves or interquartile ranges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源