论文标题
自动发现具有不同外观的政治模因流派
Automatic Discovery of Political Meme Genres with Diverse Appearances
论文作者
论文摘要
人类交流的形式不是静态的 - 由于技术的进步,我们期望随着时间的流逝传达信息的方式。这种现象的一个例子是基于图像的模因,在过去的十年中,它已成为政治消息的一种主要形式。虽然最初用来在社交媒体上传播笑话,但模因现在对公众对世界事件的看法产生了巨大影响。自动模因分析中的一个重大挑战是开发了一种策略,即当图像的外观变化时,从单一类型中匹配模因。这种变化在表现模仿的模因中尤为常见。例如,当选民执行共同的手势以表明他们对候选人的支持。在本文中,我们引入了可扩展的自动视觉识别管道,以发现各种外观的政治模因。该管道可以从社交网络中摄取模因图像,应用基于计算机视觉的技术来将本地特征提取并索引新图像到数据库中,然后将模因组织到相关类型中。为了验证这种方法,我们使用从Twitter和Instagram收集的200万张图像的新数据集对2019年印尼总统大选进行了大型案例研究。结果表明,这种方法可以发现具有共同风格元素的视觉上不同图像的新模因流派,为在语义分析和内容归因方面的进一步工作铺平了前进的方向。
Forms of human communication are not static -- we expect some evolution in the way information is conveyed over time because of advances in technology. One example of this phenomenon is the image-based meme, which has emerged as a dominant form of political messaging in the past decade. While originally used to spread jokes on social media, memes are now having an outsized impact on public perception of world events. A significant challenge in automatic meme analysis has been the development of a strategy to match memes from within a single genre when the appearances of the images vary. Such variation is especially common in memes exhibiting mimicry. For example, when voters perform a common hand gesture to signal their support for a candidate. In this paper we introduce a scalable automated visual recognition pipeline for discovering political meme genres of diverse appearance. This pipeline can ingest meme images from a social network, apply computer vision-based techniques to extract local features and index new images into a database, and then organize the memes into related genres. To validate this approach, we perform a large case study on the 2019 Indonesian Presidential Election using a new dataset of over two million images collected from Twitter and Instagram. Results show that this approach can discover new meme genres with visually diverse images that share common stylistic elements, paving the way forward for further work in semantic analysis and content attribution.