论文标题

半监督分类的图推理学习

Graph Inference Learning for Semi-supervised Classification

论文作者

Xu, Chunyan, Cui, Zhen, Hong, Xiaobin, Zhang, Tong, Yang, Jian, Liu, Wei

论文摘要

在这项工作中,我们解决了图形数据的半监督分类,其中这些未标记的节点的类别是从标记的节点和图形结构中推断出来的。最近的工作通常以常规监督的方式通过高级图卷积解决了这个问题,但是当标记的数据稀缺时,性能可能会大大降低。为此,我们提出了一个图推理学习(GIL)框架,以通过学习图形拓扑上的节点标签的推理来提高半监视节点分类的性能。为了弥合两个节点之间的连接,我们通过将节点属性,节点路径和局部拓扑结构封装在一起,正式定义结构关系,这可以使推理从一个节点方便地从一个节点转移到另一个节点。为了学习推理过程,我们进一步介绍了从训练节点到验证节点的结构关系的元优化,以便可以更好地自我适应测试节点。对四个基准数据集(包括Cora,Citeseer,PubMed和Nell)进行的全面评估证明了我们所提出的GIL与半监督节点分类任务进行比较时的优越性。

In this work, we address semi-supervised classification of graph data, where the categories of those unlabeled nodes are inferred from labeled nodes as well as graph structures. Recent works often solve this problem via advanced graph convolution in a conventionally supervised manner, but the performance could degrade significantly when labeled data is scarce. To this end, we propose a Graph Inference Learning (GIL) framework to boost the performance of semi-supervised node classification by learning the inference of node labels on graph topology. To bridge the connection between two nodes, we formally define a structure relation by encapsulating node attributes, between-node paths, and local topological structures together, which can make the inference conveniently deduced from one node to another node. For learning the inference process, we further introduce meta-optimization on structure relations from training nodes to validation nodes, such that the learnt graph inference capability can be better self-adapted to testing nodes. Comprehensive evaluations on four benchmark datasets (including Cora, Citeseer, Pubmed, and NELL) demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods on the semi-supervised node classification task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源