论文标题

关于使用功能参数的真实插值的狮子彼得方法的稳定性

On the stability of the Lions-Peetre method of real interpolation with functional parameter

论文作者

Gogatishvili, Amiran

论文摘要

令$ \ vec {x} =(x_0,x_1)$为兼容的班克空间,$ 1 \ le p \ le p \ le \ infty $,让$φ$为正质量concave函数。用$ \ Overline {x} _ {φ,p} =(x_0,x_1)_ {φ,p} $由S. Janson(1981)定义的真实插值空间。我们提供了$φ_{0} $,$φ_{1} $的必要条件 \ left(\ + edline {x} _ {φ_{0},1},\ edimelline {x} _ {φ_{1},1} \ right)_ {φ,p} = \ left(\ edline {x} _ {φ_{0},\ infty},\ overline {x} _ {φ_{1},\ infty},\ infty},\ right)所有BANACH夫妇$ \ Overline {x}。 $

Let $\vec{X}=(X_0, X_1)$ be a compatible couple of Banach spaces, $ 1\le p \le \infty$ and let $ φ$ be positive quasi-concave function. Denote by $\overline{X}_{φ,p}=(X_0,X_1)_{φ,p}$ the real interpolation spaces defined by S. Janson (1981). We give necessary and sufficient conditions on $ φ_{0}$, $φ_{1}$ and $φ$ for the validity of \begin{equation*} \left(\overline{X}_{φ_{0},1},\overline{X}_{φ_{1},1} \right) _{φ,p}= \left(\overline{X}_{φ_{0},\infty},\overline{X}_{φ_{1},\infty}\right)_{φ,p} \end{equation*} for all $ 1\le p\le \infty$, and all Banach couples $\overline{X}. $

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源