论文标题

通过有监督的机器学习的同步电动机中数据驱动的永久磁铁温度估计

Data-Driven Permanent Magnet Temperature Estimation in Synchronous Motors with Supervised Machine Learning

论文作者

Kirchgässner, Wilhelm, Wallscheid, Oliver, Böcker, Joachim

论文摘要

目前,在商业环境中,在信号注入或基于传感器的方法中,监测汽车应用中的磁铁温度(PMSM)是一项艰巨的任务,这是一项具有挑战性的任务。过热会导致严重的运动恶化,因此对机器的控制策略及其设计引起了人们的关注。缺乏精确的温度估计会导致设备利用率较低和材料成本更高。在这项工作中,几种机器学习(ML)模型在预测潜在的高动力磁体温度曲线的任务上进行了经验评估。选定算法的范围涵盖了与普通和加权最小二乘,支持向量回归,$ k $ neart的邻居,随机树和神经网络的尽可能多样的方法。有可用的测试工作台数据,显示出仅依靠收集数据的ML方法符合基于热力学理论构建的经典热模型的估计性能,但并非所有类型的模型都具有有效的大型数据集或足够的建模能力。尤其是线性回归和具有优化的超参数的简单馈送神经网络标志着低至中等模型尺寸的强预测质量。

Monitoring the magnet temperature in permanent magnet synchronous motors (PMSMs) for automotive applications is a challenging task for several decades now, as signal injection or sensor-based methods still prove unfeasible in a commercial context. Overheating results in severe motor deterioration and is thus of high concern for the machine's control strategy and its design. Lack of precise temperature estimations leads to lesser device utilization and higher material cost. In this work, several machine learning (ML) models are empirically evaluated on their estimation accuracy for the task of predicting latent high-dynamic magnet temperature profiles. The range of selected algorithms covers as diverse approaches as possible with ordinary and weighted least squares, support vector regression, $k$-nearest neighbors, randomized trees and neural networks. Having test bench data available, it is shown that ML approaches relying merely on collected data meet the estimation performance of classical thermal models built on thermodynamic theory, yet not all kinds of models render efficient use of large datasets or sufficient modeling capacities. Especially linear regression and simple feed-forward neural networks with optimized hyperparameters mark strong predictive quality at low to moderate model sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源