论文标题

基于两相的基于对象的深度学习,用于多个阶梯SAR图像变化检测

Two-Phase Object-Based Deep Learning for Multi-temporal SAR Image Change Detection

论文作者

Zhang, Xinzheng, Liu, Guo, Zhang, Ce, Atkinson, Peter M, Tan, Xiaoheng, Jian, Xin, Zhou, Xichuan, Li, Yongming

论文摘要

变化检测是合成孔径雷达(SAR)图像的基本应用之一。但是,SAR图像中呈现的斑点噪声对变化检测有很大的负面影响。在这项研究中,提出了一种新型的基于两相的基于对象的深度学习方法,以用于多阶段的SAR图像变化检测。与传统方法相比,拟议的方法带来了两项主要创新。一种是将所有像素分为三个类别,而不是两个类别:不变的像素,更改由强斑点引起的像素(错误的更改)以及由真实地形变化(实际更改)形成的更改像素。另一个是将相邻像素分组为分段为超像素对象(来自像素),例如利用本地空间上下文。在方法论中设计了两个阶段:1)基于简单的线性迭代聚类算法生成对象,并使用模糊的C均值(FCM)聚类和深度PCANET将这些对象区分为更改和不变类。此阶段的预测是一组更改和不变的超像素。 2)仅在第一阶段获得的更改超级像素上的像素集深入学习,以区分实际的变化与错误的更改。再次使用SLIC在第二阶段实现新的超像素。将低级和稀疏分解应用于这些新的超像素,以显着抑制斑点噪声。通过FCM将进​​一步的聚类步骤应用于这些新的Superpixels。然后,对新的PCANET进行了培训,以对两种更改的超级像素进行分类以获得最终的更改图。数值实验表明,与基准方法相比,所提出的方法可以通过大量降低的错误警报率有效地区分虚假变化与错误变化,并使用多个暂时的SAR成像实现多达99.71%的变化检测准确性。

Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a much negative effect on change detection. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighboring pixels into segmented into superpixel objects (from pixels) such as to exploit local spatial context. Two phases are designed in the methodology: 1) Generate objects based on the simple linear iterative clustering algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. 2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源