论文标题
量子步行混合的速度如何?
How fast do quantum walks mix?
论文作者
论文摘要
从网络上量子步行的限制分布进行采样的基本问题(称为\ emph {混合})在量子信息和计算的几个领域中找到了广泛的应用程序。在大多数这些应用中特别感兴趣的是,量子步行的瞬时概率分布仍然接近此限制分布的最小时间,称为\ emph {量子混合时间}。但是,此数量仅以少数特定网络而闻名。在这封信中,我们证明了\ emph {几乎所有网络}的量子混合时间上的上限,即我们界限所保持的网络的分数,在渐近极限中属于一个。为此,使用随机矩阵理论中的几个结果,我们发现了Erdös-Renyi随机网络的量子混合时间:$ n $节点的网络,每个边缘都独立存在概率$ p $。例如,对于密集的随机网络,其中$ p $是一个常数,我们表明量子混合时间为$ \ MATHCAL {O} \ left(N^{3/2 + O(1)} \ right)$。除了开放随机网络上量子动力学的分析研究的途径外,我们的工作还可以找到量子信息处理以外的应用程序。由于Wigner随机矩阵的普遍性,我们对随机图的光谱特性的结果适用于在几个物理学区域中无处不在的一般类随机矩阵。特别是,我们的结果可能导致对由随机汉密尔顿人定义的孤立量子系统的平衡时间的新见解,这是量子统计力学中的基础问题。
The fundamental problem of sampling from the limiting distribution of quantum walks on networks, known as \emph{mixing}, finds widespread applications in several areas of quantum information and computation. Of particular interest in most of these applications, is the minimum time beyond which the instantaneous probability distribution of the quantum walk remains close to this limiting distribution, known as the \emph{quantum mixing time}. However this quantity is only known for a handful of specific networks. In this letter, we prove an upper bound on the quantum mixing time for \emph{almost all networks}, i.e.\ the fraction of networks for which our bound holds, goes to one in the asymptotic limit. To this end, using several results in random matrix theory, we find the quantum mixing time of Erdös-Renyi random networks: networks of $n$ nodes where each edge exists with probability $p$ independently. For example for dense random networks, where $p$ is a constant, we show that the quantum mixing time is $\mathcal{O}\left(n^{3/2 + o(1)}\right)$. Besides opening avenues for the analytical study of quantum dynamics on random networks, our work could find applications beyond quantum information processing. Owing to the universality of Wigner random matrices, our results on the spectral properties of random graphs hold for general classes of random matrices that are ubiquitous in several areas of physics. In particular, our results could lead to novel insights into the equilibration times of isolated quantum systems defined by random Hamiltonians, a foundational problem in quantum statistical mechanics.