论文标题
Neumann Divergence的光谱稳定性估计值椭圆形算子
Spectral Stability Estimates of Neumann Divergence Form Elliptic Operators
论文作者
论文摘要
我们研究椭圆形操作员的光谱稳定性估计值$ - \ textrm {div} [a(w)\ nabla g(w)] $,在非lipschitz域中的neumann边界条件$ω\ subset \ subset \ mathbb c $。建议的方法是基于平面准文明映射与Sobolev空间及其对庞加莱不等式的应用的连接。
We study spectral stability estimates of elliptic operators in divergence form $-\textrm{div} [A(w) \nabla g(w)]$ with the Neumann boundary condition in non-Lipschitz domains $Ω\subset \mathbb C$. The suggested method is based on connections of planar quasiconformal mappings with Sobolev spaces and its applications to the Poincaré inequalities.