论文标题

Neumann Divergence的光谱稳定性估计值椭圆形算子

Spectral Stability Estimates of Neumann Divergence Form Elliptic Operators

论文作者

Gol'dshtein, Vladimir, Pchelintsev, Valerii, Ukhlov, Alexander

论文摘要

我们研究椭圆形操作员的光谱稳定性估计值$ - \ textrm {div} [a(w)\ nabla g(w)] $,在非lipschitz域中的neumann边界条件$ω\ subset \ subset \ mathbb c $。建议的方法是基于平面准文明映射与Sobolev空间及其对庞加莱不等式的应用的连接。

We study spectral stability estimates of elliptic operators in divergence form $-\textrm{div} [A(w) \nabla g(w)]$ with the Neumann boundary condition in non-Lipschitz domains $Ω\subset \mathbb C$. The suggested method is based on connections of planar quasiconformal mappings with Sobolev spaces and its applications to the Poincaré inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源