论文标题

沉浸网络可视化中心理图的研究

A Study of Mental Maps in Immersive Network Visualization

论文作者

Kotlarek, Joseph, Kwon, Oh-Hyun, Ma, Kwan-Liu, Eades, Peter, Kerren, Andreas, Klein, Karsten, Schreiber, Falk

论文摘要

网络的可视化会影响观众开发的心理图的质量以理解网络。在这项研究中,我们研究了3D沉浸式可视化环境与传统的2D桌面环境对网络结构理解的影响。我们使用三个任务(解释网络结构,记住一组节点)并识别结构更改(通常用于评估网络可视化中心理图的质量)来比较两个可视化环境。结果表明,参与者在身临其境的环境中查看网络时能够更准确地解释网络结构,尤其是对于大型网络。但是,我们发现,对于需要空间内存的任务,2D可视化的性能要比沉浸式可视化更好。

The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network's structure. We compare the two visualization environments using three tasks--interpreting network structure, memorizing a set of nodes, and identifying the structural changes--commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源