论文标题

Novák对循环施泰纳三重系统的猜想及其概括

Novák's conjecture on cyclic Steiner triple systems and its generalization

论文作者

Feng, Tao, Horsley, Daniel, Wang, Xiaomiao

论文摘要

Novák在1974年猜想,对于任何循环施泰纳三重系统,$ v $带有$ v \ equiv 1 \ pmod {6} $的订单$ v $,始终可以从每个块轨道中选择一个块,以使所选的块是成对的脱节。我们考虑将此猜想的概括为环状$(v,k,λ)$ - 以$ 1 \leqλ\ leq k-1 $设计。叠加循环对称设计的多个副本表明,对于所有$ v $,概括都无法实现,但是我们认为,每当$ v $足够大,而与$ k $相比,它会保留。我们确认,当$ v $是Prime和$λ= 1 $的情况下,猜想的概括以及当$λ\ leq(k-1)/2 $和$ v $相比$ k $时也足够大。作为推论,我们表明,对于任何$ k \ geq 3 $,除了有限的许多复合订单$ v $外,每个环状$(v,k,1)$ - 无短轨道的设计是由$(v,k,k,1)$ - $ - 与众不同的差异差异。

Novák conjectured in 1974 that for any cyclic Steiner triple systems of order $v$ with $v\equiv 1\pmod{6}$, it is always possible to choose one block from each block orbit so that the chosen blocks are pairwise disjoint. We consider the generalization of this conjecture to cyclic $(v,k,λ)$-designs with $1 \leq λ\leq k-1$. Superimposing multiple copies of a cyclic symmetric design shows that the generalization cannot hold for all $v$, but we conjecture that it holds whenever $v$ is sufficiently large compared to $k$. We confirm that the generalization of the conjecture holds when $v$ is prime and $λ=1$ and also when $λ\leq (k-1)/2$ and $v$ is sufficiently large compared to $k$. As a corollary, we show that for any $k \geq 3$, with the possible exception of finitely many composite orders $v$, every cyclic $(v,k,1)$-design without short orbits is generated by a $(v,k,1)$-disjoint difference family.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源