论文标题

相对论的康奈尔型式标量共振的机制

The Relativistic Cornell-type Mechanism of Exotic Scalar Resonances

论文作者

Badalian, A. M., Lukashov, M. S., Simonov, Yu. A.

论文摘要

耦合$ q \ bar q $和$φφ$(π-π$,$ k \ bar k,πk,... $)标量通道的形式主义被考虑到地面和径向激发$ q \ bar q $ pol。基本角色显示出通过过渡系数$ k^{(i)}(q \ bar q,|φφ)$扮演,该$使用Quark-hiral lagrangian无需免费参数就计算出来。所得的方法称为杆投影机制(PPM),可确保:1)从基本$ q \ bar q $ pole,例如,每个$φφ$通道的一个共振,例如$ f_0(500)$共振在$ππ$ channel中; 2)有可能有两个$φφ$共振,与同一频道耦合在Meson-Meson通道中考虑到同一$ f_0(500)$和$ f_0(980)(980)$的同一$ n \ bar n \ bar n \ bar n \ bar n \ bar n \ bar n \ bar n \ bar n \ bar N $ apor abous of 1 geev; 3)由于大型过渡系数$ k^{(i)} $,在没有免费参数的情况下计算出的大型过渡系数$ k^{(i)} $,强的极点向下移动($ππ,πk)$通道。 The parameters of calculated complex poles are in reasonable agreement with the experimental data of the resonances $f_0(500)$, $f_0(980)$, $a_0(980)$, $a_0(1450)$, $K^*_0(700)$, $K^*_0(1430)$, $f_0(1370)$ and $f_0(1710)$.

The formalism of the coupled $q\bar q$ and the $φφ( π-π$, $K\bar K, πK,...$) scalar channels is formulated, taking into account the ground and radial excited $q\bar q$ poles. The basic role is shown to be played by the transition coefficients $k^{(I)} (q\bar q, |φφ)$, which are calculated using the quark-chiral Lagrangian without free parameters. The resulting method, called the pole projection mechanism (PPM), ensures: 1) one resonance for each $φφ$ channel from the basic $q\bar q$ pole, e.g. the $f_0 (500)$ resonance in the $ππ$ channel; 2) a possibility to have two $φφ$ resonances, coupled to the same $q\bar q$ state, when the channel coupling is taken into account in the meson-meson channels, which yields $f_0 (500)$ and $f_0(980)$ from the same $n\bar n$ pole around 1 GeV; 3) the strong pole shift down for special ($ππ, πK)$ channels due to large transition coefficients $k^{(I)}$, computed in this formalism without free parameters. The parameters of calculated complex poles are in reasonable agreement with the experimental data of the resonances $f_0(500)$, $f_0(980)$, $a_0(980)$, $a_0(1450)$, $K^*_0(700)$, $K^*_0(1430)$, $f_0(1370)$ and $f_0(1710)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源