论文标题
在同时限制固定随机INAR(1)过程的限制范围内
On simultaneous limits for aggregation of stationary randomized INAR(1) processes with Poisson innovations
论文作者
论文摘要
我们调查了n个独立的n个独立副本的共同的时间和同时聚集,该副本的n独立副本是第1(inar(1))的n独立副本,其随机系数$α\ in(0,1)$以及具有特殊的Poisson创新。假设$α$具有$ψ(x)(x)(1- x)^β$,$ x \ in(0,1)$的密度函数,带有$β\ in(-1,\ infty)$和$ \ lim_ {x \ lim_ {x \ uparrow 1}ψ(x)ψ(x)ψ(x)= x =ψ_1\ in(x)在所谓的同时情况下,即$ n $和$ n $和时间尺度$ n $以给定的速率以$β$ n $增加。$β\ in(0,\ infty)$保持开放。我们还对共同的分配官方进行有限的分配,该款项仍在(0,\ inftty)中,以$β$β\ in(0,\ infty)的质疑,该汇率以$β\ in(0,\ infty)的质疑,该汇率均以$β$β置于有限的分配中。
We investigate joint temporal and contemporaneous aggregation of N independent copies of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1)) with random coefficient $α\in(0,1)$ and with idiosyncratic Poisson innovations. Assuming that $α$ has a density function of the form $ψ(x) (1 - x)^β$, $x \in (0,1)$, with $β\in(-1,\infty)$ and $\lim_{x\uparrow 1} ψ(x) = ψ_1 \in (0,\infty)$, different limits of appropriately centered and scaled aggregated partial sums are shown to exist for $β\in(-1,0]$ in the so-called simultaneous case, i.e., when both $N$ and the time scale $n$ increase to infinity at a given rate. The case $β\in(0,\infty)$ remains open. We also give a new explicit formula for the joint characteristic functions of finite dimensional distributions of the appropriately centered aggregated process in question.