论文标题

多层网络的采样图形:限制随机步行方法

Sampling Graphlets of Multi-layer Networks: A Restricted Random Walk Approach

论文作者

Jiao, Simiao, Xue, Zihui, Chen, Xiaowei, Xu, Yuedong

论文摘要

Graphlet是诱导的子图模式,对于理解大型网络的结构和功能至关重要。大量努力已致力于计算Graphlet统计信息,其中通常使用基于随机步行的方法通过可用的应用程序编程接口(API)访问受限图。但是,他们中的大多数只是考虑各个网络,同时忽略了不同网络之间的强耦合。在本文中,我们估计具有现实世界应用的多层网络中的图形浓度。如果层间边缘属于同一个人,则在不同层中连接两个节点。在上层允许随机行走采样的意义上,对多层网络的访问是限制性的,而仅在层间边缘和仅支持随机节点或边缘采样的情况下,下层的节点才能访问下层的节点。为了应对这一新挑战,我们定义了两层图形的西装,并提出了一种新颖的随机步行采样算法,以估计所有3节点图形的比例。事实证明,对采样步骤的分析结合可以保证我们无偏估计器的收敛性。我们进一步概括了我们的算法,以探索当样本量在不同层上拆分时,不同图形的估计精确度之间的权衡。对现实世界和合成多层网络的实验评估证明了我们无偏估计器的准确性和高效率。

Graphlets are induced subgraph patterns that are crucial to the understanding of the structure and function of a large network. A lot of efforts have been devoted to calculating graphlet statistics where random walk based approaches are commonly used to access restricted graphs through the available application programming interfaces (APIs). However, most of them merely consider individual networks while overlooking the strong coupling between different networks. In this paper, we estimate the graphlet concentration in multi-layer networks with real-world applications. An inter-layer edge connects two nodes in different layers if they belong to the same person. The access to a multi-layer network is restrictive in the sense that the upper layer allows random walk sampling, whereas the nodes of lower layers can be accessed only though the inter-layer edges and only support random node or edge sampling. To cope with this new challenge, we define a suit of two-layer graphlets and propose a novel random walk sampling algorithm to estimate the proportion of all the 3-node graphlets. An analytical bound on the sampling steps is proved to guarantee the convergence of our unbiased estimator. We further generalize our algorithm to explore the tradeoff between the estimated accuracies of different graphlets when the sample size is split on different layers. Experimental evaluation on real-world and synthetic multi-layer networks demonstrate the accuracy and high efficiency of our unbiased estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源