论文标题
扭转巨大的缺乏无效的半径
Absence of a Vainshtein radius in torsion bigravity
论文作者
论文摘要
Vainshtein很久以前就指出了它[Phys。 Lett。 39b,393(1972)],涉及大量自旋-2激发的通用理论(非线性fierz-pauli型)的弱场扰动扩展在物质源周围的一定距离以下(“ vainshtein radius”)(“ vainshtein radius”)(“ Vainshtein radius”)(“ vainshtein radius”),作为spin-2 spin-2 spin-2 spin-2 $ m_2 $ _2 $ _2 $ _E的某些逆力,即在这里,我们证明,这个结论不适用于广义的爱因斯坦 - 卡丹理论(称为“扭曲bigravity”),该理论是对无质量的Spin-2激发和巨大的Spin-2的频谱(如双重性重力)进行的。在静态球形对称的ANSATZ中工作,我们通过根据新变量重新设计场方程来证明,可以构建一个全订单的弱场扰动扩展,在该方程中,没有涉及$ M_2 $的分母$ r \ ll m_2^{ - 1} $。特别是,我们展示了形式的大型限制$ m_2 \至0 $如何导致定义明确的有限扰动扩展,其全阶结构将在一些详细的范围内进行讨论。
It was pointed out long ago by Vainshtein [Phys. Lett. 39B, 393 (1972)] that the weak-field perturbation expansion of generic theories (of the nonlinear Fierz-Pauli type) involving massive spin-2 excitations breaks down below a certain distance around a material source ("Vainshtein radius"), scaling as some inverse power of the spin-2 mass $m_2$, i.e., some positive power of the range $m_2^{-1}$. Here we prove that this conclusion does not apply in a generalized Einstein-Cartan theory (called "torsion bigravity") whose spectrum is made (like that of bimetric gravity) of a massless spin-2 excitation and a massive spin-2 one. Working within a static spherically symmetric ansatz, we prove, by reformulating the field equations in terms of new variables, that one can construct an all-order weak-field perturbative expansion where no denominators involving $m_2$ ever appear in the region $r \ll m_2^{-1}$. In particular, we show how the formal large-range limit, $m_2 \to 0$, leads to a well-defined, finite perturbation expansion, whose all-order structure is discussed in some detail.