论文标题
有限类型和应用的凸域的二元分解
Dyadic decomposition of convex domains of finite type and applications
论文作者
论文摘要
在本文中,我们通过所谓的二元流帐篷在有限类型的凸域上引入了二元结构。这种二元结构使我们能够在此类域中对伯格曼投影$ p $建立加权规范估计值,相对于Muckenhoupt的重量。特别是,此结果提供了$ p $ $ p $的$ l^p $的替代证明。此外,使用外推,我们还能够为伯格曼投影得出加权矢量值估计值和加权模块不平等。
In this paper, we introduce a dyadic structure on convex domains of finite type via the so-called dyadic flow tents. This dyadic structure allows us to establish weighted norm estimates for the Bergman projection $P$ on such domains with respect to Muckenhoupt weights. In particular, this result gives an alternative proof of the $L^p$ boundedness of $P$. Moreover, using extrapolation, we are also able to derive weighted vector-valued estimates and weighted modular inequalities for the Bergman projection.