论文标题
亚网格模型对银河形成模拟中巨型分子云特性的影响
The effects of subgrid models on the properties of giant molecular clouds in galaxy formation simulations
论文作者
论文摘要
最近的宇宙学水动力学模拟能够再现与观察数据一致的星系的众多统计特性。然而,采用的子网格模型强烈影响模拟结果,从而限制了这些模拟的预测能力。在这项工作中,我们在{\ IT走私}框架下执行了一套孤立的银河磁盘模拟,并研究了不同的亚网格模型如何影响巨型分子云(GMC)的性质。我们采用{\ sc astrodendro},一种层次结构捕获算法,以识别模拟中的GMC。我们发现,子网格恒星形成效率的不同选择,$ε_ {\ rm ff} $以及出色的反馈通道,为GMC种群产生巨大不同的质量和空间分布。没有反馈,GMC的质量功能具有较浅的幂律斜率,并且与反馈的运行相比,质量范围更高。此外,较高的$ε_ {\ rm ff} $会导致更快的分子气体消耗和较陡的质量功能斜率。反馈还抑制了GMC的空间分布的两点相关函数(TPCF)的功率。具体而言,辐射反馈大大降低了低于0.2 kpc的尺度上的TPCF,而超新星反馈则降低了尺度上的功率以上0.2〜kpc。最后,以$ε_ {\ rm ff} $更高的tpcf运行量比$ $ε_ {\ rm ff} $更高,因为浓稠的气体的耗尽效率更高,从而促进了结构良好的超级诺瓦气泡的形成。我们认为,比较模拟和观察到的GMC群体可以帮助更好地约束GALAXY形成模拟的下一代中的亚网格模型。
Recent cosmological hydrodynamical simulations are able to reproduce numerous statistical properties of galaxies that are consistent with observational data. Yet, the adopted subgrid models strongly affect the simulation outcomes, limiting the predictive power of these simulations. In this work, we perform a suite of isolated galactic disk simulations under the {\it SMUGGLE} framework and investigate how different subgrid models affect the properties of giant molecular clouds (GMCs). We employ {\sc astrodendro}, a hierarchical clump-finding algorithm, to identify GMCs in the simulations. We find that different choices of subgrid star formation efficiency, $ε_{\rm ff}$, and stellar feedback channels, yield dramatically different mass and spatial distributions for the GMC populations. Without feedback, the mass function of GMCs has a shallower power-law slope and extends to higher mass ranges compared to runs with feedback. Moreover, higher $ε_{\rm ff}$ results in faster molecular gas consumption and steeper mass function slopes. Feedback also suppresses power in the two-point correlation function (TPCF) of the spatial distribution of GMCs. Specifically, radiative feedback strongly reduces the TPCF on scales below 0.2~kpc, while supernova feedback reduces power on scales above 0.2~kpc. Finally, runs with higher $ε_{\rm ff}$ exhibit a higher TPCF than runs with lower $ε_{\rm ff}$, because the dense gas is depleted more efficiently thereby facilitating the formation of well-structured supernova bubbles. We argue that comparing simulated and observed GMC populations can help better constrain subgrid models in the next-generation of galaxy formation simulations.