论文标题
UR2KID:统一检索,关键点检测和关键点描述,而无需本地通信监督
UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint Description without Local Correspondence Supervision
论文作者
论文摘要
在本文中,我们探讨了如何使用单个统一框架共同处理三个相关任务,即关键点检测,描述和图像检索,该框架无需培训数据,而无需使用点对点对应点进行培训数据。通过利用基于标准的基于重新连接的架构的顺序层中的不同信息,我们能够使用诸如局部激活规范,通道分组和掉落以及自我介绍的通用技术来编码本地信息,从而提取键盘和描述符。随后,基于上述本地响应的汇总,在端到端管道中编码了用于图像检索的全局信息。与局部匹配中的以前方法相反,我们的方法不取决于点/pixelwise的对应关系,并且根本不需要这样的监督,即没有来自SFM模型的深度映射,也不需要手动创建合成仿射变换。我们说明,这种简单而直接的范式能够在各种具有挑战性的基准条件(例如观点变化,比例变化和日夜变化的本地化)中对最先进的方法取得非常具竞争力的结果。
In this paper, we explore how three related tasks, namely keypoint detection, description, and image retrieval can be jointly tackled using a single unified framework, which is trained without the need of training data with point to point correspondences. By leveraging diverse information from sequential layers of a standard ResNet-based architecture, we are able to extract keypoints and descriptors that encode local information using generic techniques such as local activation norms, channel grouping and dropping, and self-distillation. Subsequently, global information for image retrieval is encoded in an end-to-end pipeline, based on pooling of the aforementioned local responses. In contrast to previous methods in local matching, our method does not depend on pointwise/pixelwise correspondences, and requires no such supervision at all i.e. no depth-maps from an SfM model nor manually created synthetic affine transformations. We illustrate that this simple and direct paradigm, is able to achieve very competitive results against the state-of-the-art methods in various challenging benchmark conditions such as viewpoint changes, scale changes, and day-night shifting localization.