论文标题
矢量单源表面积分方程,用于从圆柱多层对象散射的Te散射
Vector Single-Source Surface Integral Equation for TE Scattering From Cylindrical Multilayered Objects
论文作者
论文摘要
本文提出了来自圆柱多多层物体的横向电动(TE)散射的单源表面积分方程(SS-SIE)。通过合并差分表面入口操作员(DSAO),并递归地将表面等效定理从最内部到最外部边界应用,可以获得一个等效模型,只能在最外面的边界上获得电流密度。此外,提出了一种集成方法,其中使用汉克尔函数的小参数扩展来评估单数和几乎奇异的积分。与其他SIE相比,例如Poggio-Miller-Chang-Harrington-wu-tsai(PMCHWT)公式,对于多层结构而言,计算支出降低了,因为在最外面的边界上只需要一个源。如数值结果所示,所提出的方法仅生成19%的未知数,使用26%的内存,并且需要PMCHWT公式的CPU时间的29%。
A single-source surface integral equation (SS-SIE) for transverse electric (TE) scattering from cylindrical multilayered objects is proposed in this paper. By incorporating the differential surface admittance operator (DSAO) and recursively applying the surface equivalence theorem from innermost to outermost boundaries, an equivalent model with only electric current density on the outermost boundary can be obtained. In addition, an integration approach is proposed, where the small argument expansion of the Hankel function is used to evaluate the singular and nearly singular integrals. Compared with other SIEs, such as the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation, the computational expenditure is reduced for multilayered structures because only a single source is needed on the outermost boundary. As shown in the numerical results, the proposed method generates only 19% of unknowns, uses 26% of memory, and requires 29% of the CPU time of the PMCHWT formulation.