论文标题
$ jp_n $,$ n \ geq 3 $的Jordan超级代数
Jordan super algebras of type $JP_n$, $n\geq 3$ and the Wedderburn principal theorem
论文作者
论文摘要
我们调查了Wedderburn校长定理(WPT)的类似物,以使用有限的Jordan Superalgebra $ j $,其可解决的自由基$ n $,因此$ n^2 = 0 $和$ j/n \ cong jp_n $,$ n \ n \ geq 3 $。 我们认为$ n $是不可约的$ jp_n $ bimodule,我们证明了wpt以$ j $的价格持有。
We investigate an analogue to the Wedderburn Principal Theorem (WPT) for a finite-dimensional Jordan superalgebra $J$ with solvable radical $N$ such that $N^2=0$ and $J/N\cong JP_n$, $n\geq 3$. We consider $N$ as an irreducible $JP_n$-bimodule and we prove that the WPT holds for $J$.