论文标题

p-rank $ε$ - 集体上的注射件对于p-extensions的塔是正确的

The p-rank $ε$-conjecture on class groups is true for towers of p-extensions

论文作者

Gras, Georges

论文摘要

令P $ \ ge $ 2为给定的质量数。我们证明,对于任何数字字段kappa和任何整数e $ \ ge $ 1,p级$ε$ - 注射器,在p级cl \ _f上,为家庭f \ _kappa^p^e hird tot f/kappa构建为连续p/kappa的连续程度p cyclic扩展(没有其他条件)(例如,没有其他条件)。 #(cl \ _f [p])<< \ _ {kappa,p^e,$ε$}($ \ sqrt $ d \ _f)^$ε$,其中d \ _f是歧视剂的绝对值(theorem 3.6)和更普遍的,更普遍的,更普遍的,更普遍的, #(cl \ _f [p^r])<< \ _ {kappa,p^e,$ε$}($ \ sqrt $ d \ _f)^$ε$,对于任何r $ \ ge $ 1固定。本说明概括了家庭f \ _q^p的情况(属理论和$ε$ - 注射p级群体,J。 Then we prove, for F\_kappa^p^e, the p-rank $ε$-conjecture on the cohomology groups H^2(G\_F,Z\_p) of Galois p-ramification theory over F (Theorem 4.3) and for some other classical finite p-invariants of F, as the Hilbert kernels and the logarithmic class groups.

Let p$\ge$2 be a given prime number. We prove, for any number field kappa and any integer e$\ge$1, the p-rank $ε$-conjecture, on the p-class groups Cl\_F, for the family F\_kappa^p^e of towers F/kappa built as successive degree p cyclic extensions (without any other Galois conditions) such that F/kappa be of degree p^e, namely: #(Cl\_F[p])<<\_{kappa,p^e,$ε$}($\sqrt$D\_F)^$ε$, where D\_F is the absolute value of the discriminant (Theorem 3.6) and, more generally, #(Cl\_F[p^r])<<\_{kappa,p^e,$ε$}($\sqrt$D\_F)^$ε$, for any r$\ge$1 fixed. This Note generalizes the case of the family F\_Q^p (Genus theory and $ε$-conjectures on p-class groups, J. Number Theory 207, 423--459 (2020)), whose techniques appear to be "universal" for all relative degree p cyclic extensions and use the Montgomery--Vaughan result on prime numbers. Then we prove, for F\_kappa^p^e, the p-rank $ε$-conjecture on the cohomology groups H^2(G\_F,Z\_p) of Galois p-ramification theory over F (Theorem 4.3) and for some other classical finite p-invariants of F, as the Hilbert kernels and the logarithmic class groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源