论文标题
一粒子Aubry-André模型中水平排斥的动力检测
Dynamical Detection of Level Repulsion in the One-Particle Aubry-André Model
论文作者
论文摘要
水平统计的分析提供了一种检测量子域中混乱特征的主要方法。但是,对于使用离子陷阱和冷原子的实验,能量水平不像动力学那样容易访问。在这项工作中,我们讨论了如何直接从数量算子的演变中直接检测到通常与混乱相关的频谱的性质在一维,非互操作的aubry-andré模型中。在冷原子的实验中研究了数量和模型。我们考虑一个可以实验到达的单粒子和系统尺寸。通过在值以下的值之内改变混乱强度,可以获得与随机矩阵理论相似的水平统计数据。从动态上讲,这些频谱的这些属性以浸入数字运算符平衡点的形式表现出来。此功能有时会在实验上访问。这项工作是针对Shmuel Fishman的特刊的贡献。
The analysis of level statistics provides a primary method to detect signatures of chaos in the quantum domain. However, for experiments with ion traps and cold atoms, the energy levels are not as easily accessible as the dynamics. In this work, we discuss how properties of the spectrum that are usually associated with chaos can be directly detected from the evolution of the number operator in the one-dimensional, noninteracting Aubry-André model. Both the quantity and the model are studied in experiments with cold atoms. We consider a single-particle and system sizes experimentally reachable. By varying the disorder strength within values below the critical point of the model, level statistics similar to those found in random matrix theory are obtained. Dynamically, these properties of the spectrum are manifested in the form of a dip below the equilibration point of the number operator. This feature emerges at times that are experimentally accessible. This work is a contribution to a special issue dedicated to Shmuel Fishman.