论文标题

在局部对称空间中膨胀hhosperes的有效等分分布,SO(d)\ sl(d,r) / sl(d,z)(d,z)

Effective equidistribution of expanding horospheres in the locally symmetric space SO(d) \ SL(d,R) / SL(d,Z)

论文作者

Druţu, Cornelia, Peyerimhoff, Norbert

论文摘要

我们在扩张的D维椭圆形内(欧几里得计数)和闭合的h旋兰的升降机计数之间使用晶格点计数之间的字典,该链型的计数与半径增加的球相交,以获得两种类型的结果。首先,通过欧几里得计数的$ l^2 $ - 综合误差估计,我们证明了在本地对称空间中扩展houspheres家族的有效等分分配结果,因此(d)\ sl(d,r) / sl(d,d,z)。其次,我们源自欧几里得计数中的均匀误差估计,在SO(D)\ SL(D,D,R)中,计数SL(D,Z)-Orbit点的误差术语(我们称之为截短的嵌合片),以及计算与大径于大的闭合的Horosphere的升降机的数量。

We use a dictionary between lattice point counting inside dilated d-dimensional ellipsoids (Euclidean counting) and counting of lifts of a closed horosphere that intersect a ball of increasing radius, to obtain two types of results. Firstly, via an $L^2$-integral error estimate for Euclidean counting, we prove effective equidistribution results for a family of expanding horospheres in the locally symmetric space SO(d) \ SL(d,R) / SL(d,Z). Secondly, we derive from uniform error estimates in Euclidean counting, error terms for counting SL(d,Z)-orbit points in a certain increasing family of subsets in SO(d) \ SL(d,R) (which we call truncated chimneys), and for counting the number of lifts of a closed horosphere that intersect a ball with large radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源