论文标题
$ u(2)$量规理论中的异常相互作用
Anomaly interplay in $U(2)$ gauge theories
论文作者
论文摘要
我们讨论$ u(2)$量规理论中取消异常的四个维度。对于用自旋结构定义的$ U(2)$量规理论,Bordism组的消失$ω_5^{\ text {spin}}}(bu(bu(2))$意味着没有全球异常,与$ su(2)$量表理论相关的情况相反。我们明确表明,当$ su(2)$嵌入$ u(2)$时,熟悉的$ su(2)$全局异常被本地异常替换。 Isospin $ 2R+1/2 $,对于\ Mathbb {z} _ {\ geq 0} $,必须有均匀数量的费米子,以取消此本地异常。 $ u(2)$理论的情况下定义了旋转结构,而是使用旋转$ u(2)$结构,当所有费米子(玻色子)具有半数(integer)isospin和奇数(偶数)$ u(1)$电荷时,这是可能的。我们发现,最近发现的“新$ su(2)$全局异常”也等效,尽管仅在分区函数的级别上,与$ u(2)$理论中的扰动异常,这是这次混合量规异常与量规 - 格拉夫的组合。如果isospin $ 4R+3/2 $,此扰动异常会消失,对于$ r \ in \ mathbb {z} _ {\ geq 0} $,恢复了取消新的$ su(2)$ Anomaly的条件。另外,这种扰动异常可以用wess-zumino术语取消,使低能理论具有全球异常,本身可以通过耦合到自由度的耦合来取消。
We discuss anomaly cancellation in $U(2)$ gauge theories in four dimensions. For a $U(2)$ gauge theory defined with a spin structure, the vanishing of the bordism group $Ω_5^{\text{Spin}}(BU(2))$ implies that there can be no global anomalies, in contrast to the related case of an $SU(2)$ gauge theory. We show explicitly that the familiar $SU(2)$ global anomaly is replaced by a local anomaly when $SU(2)$ is embedded in $U(2)$. There must be an even number of fermions with isospin $2r+1/2$, for $r\in \mathbb{Z}_{\geq 0}$, for this local anomaly to cancel. The case of a $U(2)$ theory defined without a choice of spin structure but rather using a spin-$U(2)$ structure, which is possible when all fermions (bosons) have half-integer (integer) isospin and odd (even) $U(1)$ charge, is more subtle. We find that the recently-discovered `new $SU(2)$ global anomaly' is also equivalent, though only at the level of the partition function, to a perturbative anomaly in the $U(2)$ theory, which is this time a combination of a mixed gauge anomaly with a gauge-gravity anomaly. This perturbative anomaly vanishes if there is an even number of fermions with isospin $4r+3/2$, for $r\in \mathbb{Z}_{\geq 0}$, recovering the condition for cancelling the new $SU(2)$ anomaly. Alternatively, this perturbative anomaly can be cancelled by a Wess--Zumino term, leaving a low-energy theory with a global anomaly, which can itself be cancelled by coupling to topological degrees of freedom.