论文标题

Tasep模型中的随机吸引力

Random attraction in the TASEP model

论文作者

Grüne, Lars, Kriecherbauer, Thomas, Margaliot, Michael

论文摘要

完全不对称的简单排除过程(TASEP)是统计力学的基本模型,发现了许多应用。我们考虑使用有限链的Tasep的情况,在该链中可以从左侧进入,并以规定的速率向右留下。 该模型可以作为具有有限数量状态的马尔可夫过程配制。由于该过程的不可约性,因此众所周知,状态上的概率分布在全球范围内被独特的平衡分布所吸引。 我们将此结果扩展到更详细的单个轨迹水平。为此,我们将tasep作为一个随机动力学系统提出。我们的主要结果是,来自所有可能初始条件的轨迹彼此收缩,产生了几乎肯定由单个轨迹组成的随机吸引子的存在。这意味着从长远来看,``过滤掉了'''任何扰动都会改变沿链的粒子状态。 为了证明我们的主要结果,我们首先确定有限状态空间上的任何随机动力系统都具有全局随机回拔吸引子和全球随机前向吸引子。文献中似乎缺少这种观察结果。然后,我们为这些吸引者提供足够和必要的条件成为单身人士。最后,我们表明Tasep满足了这些条件之一。

The totally asymmetric simple exclusion process (TASEP) is a basic model of statistical mechanics that has found numerous applications. We consider the case of TASEP with a finite chain where particles may enter from the left and leave to the right at prescribed rates. This model can be formulated as a Markov process with a finite number of states. Due to the irreducibility of the process it is well-known that the probability distribution on the states is globally attracted to a unique equilibrium distribution. We extend this result to the more detailed level of individual trajectories. To do so we formulate TASEP as a random dynamical system. Our main result is that the trajectories from all possible initial conditions contract to each other yielding the existence of a random attractor that consists of a single trajectory almost surely. This implies that in the long run TASEP ``filters out'' any perturbation that changes the state of the particles along the chain. In order to prove our main result we first establish that any random dynamical system on a finite state space possesses both a global random pullback attractor and a global random forward attractor. This observation appears to be missing in the literature. We then provide sufficient and necessary conditions for these attractors to be singletons. Finally, we show that TASEP satisfies one of these conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源