论文标题

大型数据的空间变化系数模型的最大似然估计,并应用于房地产价格预测

Maximum Likelihood Estimation of Spatially Varying Coefficient Models for Large Data with an Application to Real Estate Price Prediction

论文作者

Dambon, Jakob A., Sigrist, Fabio, Furrer, Reinhard

论文摘要

在空间数据的回归模型中,通常假定协变量对响应的边际影响在空间上是恒定的。实际上,这个假设通常可能值得怀疑。在本文中,我们展示了如何使用最大似然估计(MLE)估算基于高斯过程的空间变化系数(SVC)模型。此外,我们提出了一种方法,该方法通过应用协方差逐渐变细而扩展到大数据。我们将我们的方法与现有方法进行比较,例如使用随机部分微分方程(SPDE)链接,地理位置加权回归(GWR)和特征向量空间滤波(ESF)等现有方法,并在仿真研究中以及一个应用程序中的应用程序都可以预测瑞士房地产公寓的价格。仿真研究和应用的结果表明,MLE方法可提高预测精度和更精确的估计。由于我们使用基于模型的方法,因此我们还可以提供预测性差异。与现有的基于模型的方法相反,我们的方法缩放到数据上两个空间点数都大,并且空间变化的协变量的数量中等尺寸,例如十个以上。

In regression models for spatial data, it is often assumed that the marginal effects of covariates on the response are constant over space. In practice, this assumption might often be questionable. In this article, we show how a Gaussian process-based spatially varying coefficient (SVC) model can be estimated using maximum likelihood estimation (MLE). In addition, we present an approach that scales to large data by applying covariance tapering. We compare our methodology to existing methods such as a Bayesian approach using the stochastic partial differential equation (SPDE) link, geographically weighted regression (GWR), and eigenvector spatial filtering (ESF) in both a simulation study and an application where the goal is to predict prices of real estate apartments in Switzerland. The results from both the simulation study and application show that the MLE approach results in increased predictive accuracy and more precise estimates. Since we use a model-based approach, we can also provide predictive variances. In contrast to existing model-based approaches, our method scales better to data where both the number of spatial points is large and the number of spatially varying covariates is moderately-sized, e.g., above ten.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源