论文标题

全息时空和量子信息

Holographic Space-time and Quantum Information

论文作者

Banks, T.

论文摘要

全息时空(HST)的形式主义是将洛伦兹几何学原理转化为量子信息语言。沿时间样轨迹及其相关的因果钻石的间隔完全表征了洛伦兹的几何形状。 Bekenstein-Hawking-Gibbons-没有Hooft-Jacobson-Fischler-Susskind-Bousso-Bousso协方差熵原理等同于与钻石相关的Hilbert空间维度的对数与钻石全息屏幕的四分之一相对,在Planck单元中测量。关于这一原则的最令人信服的论点是雅各布森将爱因斯坦方程式推导为该熵定律的流体动力表达。在这种情况下,无效的能量条件(NEC)被认为是熵纳入熵定律增加的类似物。爱因斯坦相对性原理的量子版本是因果钻石沿不同时间样轨迹共享的相互量子信息的一组约束。对相对运动中轨迹的这种约束的实施是HST中最大的未解决问题。 HST的另一个关键特征是,它声称,对于负C.C.的非阴性宇宙常数或因果钻石而言,曲率的渐近半径要小得多,对于钻石的大部分自由度而言,自由度是在全息图屏幕上定义的变量的约束状态。该原则简单地解释了BH熵公式的令人困惑的特征,并解决了Minkowski空间中黑洞的防火墙问题。它激发了ckn \ cite {ckn}的协方差版本,限制在量子场理论有效性(QFT)的有效性方面,并详细描述了QFT作为确切理论的近似值的方式。

The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-'t Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates the logarithm of the dimension of the Hilbert space associated with a diamond to one quarter of the area of the diamond's holographic screen, measured in Planck units. The most convincing argument for this principle is Jacobson's derivation of Einstein's equations as the hydrodynamic expression of this entropy law. In that context, the null energy condition (NEC) is seen to be the analog of the local law of entropy increase. The quantum version of Einstein's relativity principle is a set of constraints on the mutual quantum information shared by causal diamonds along different time-like trajectories. The implementation of this constraint for trajectories in relative motion is the greatest unsolved problem in HST. The other key feature of HST is its claim that, for non-negative cosmological constant or causal diamonds much smaller than the asymptotic radius of curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond are constrained states of variables defined on the holographic screen. This principle gives a simple explanation of otherwise puzzling features of BH entropy formulae, and resolves the firewall problem for black holes in Minkowski space. It motivates a covariant version of the CKN\cite{ckn} bound on the regime of validity of quantum field theory (QFT) and a detailed picture of the way in which QFT emerges as an approximation to the exact theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源