论文标题
需要多少个简单来进行三角测量?
How many simplices are needed to triangulate a Grassmannian?
论文作者
论文摘要
我们计算一个针对三角形的简单数量的下限,以使Grassmann歧管$ G_K(\ Mathbb {r}^n)$。特别是,我们表明,高层简洁的数量以$ n $成倍增长。给出$ k = 2,3,4 $的更精确的估计。我们的方法可用于估计其他空间的三角形的最小尺寸,例如谎言组,标志歧管,stiefel歧管等。
We compute a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_k(\mathbb{R}^n)$. In particular, we show that the number of top-dimensional simplices grows exponentially with $n$. More precise estimates are given for $k=2,3,4$. Our method can be used to estimate the minimal size of triangulations for other spaces, like Lie groups, flag manifolds, Stiefel manifolds etc.