论文标题

Heisenberg Group中一类准线性退化抛物线方程的规律性

Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group

论文作者

Capogna, Luca, Citti, Giovanna, Garofalo, Nicola

论文摘要

我们扩展到抛物面设置的一些想法,该想法源自Xiao Zhong在Heisenberg Group $ \ hn $中的Hölder规律性的\ cite {Zhong}中的证明。给定一个数字$ p \ ge 2 $,在本文中,我们建立了$ c^{\ infty} $弱解决方案的平滑度,以$ \ hn $模拟在等式$ \ p_t u = \ p_t u = \ sum_ = \ sum_ = \ sum_ {i = 1}^{2n}^{2n} x_i \ bigG(nabla)上u |^2)^{\ frac {p-2} {2}} x_i u \ bigg)。$$

We extend to the parabolic setting some of the ideas originated with Xiao Zhong's proof in \cite{Zhong} of the Hölder regularity of $p-$harmonic functions in the Heisenberg group $\Hn$. Given a number $p\ge 2$, in this paper we establish the $C^{\infty}$ smoothness of weak solutions of quasilinear pde's in $\Hn$ modelled on the equation $$\p_t u= \sum_{i=1}^{2n} X_i \bigg((1+|\nabla_0 u|^2)^{\frac{p-2}{2}} X_i u\bigg).$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源