论文标题
基于模型的深度学习,用于重建关节K-Q不采样的高分辨率扩散MRI
Model-Based Deep Learning for Reconstruction of Joint k-q Under-sampled High Resolution Diffusion MRI
论文作者
论文摘要
我们提出了一种基于模型的深度学习结构,用于重建高加速扩散磁共振成像(MRI),以实现高分辨率成像。所提出的重建联合从一个平行MRI设置中的关节K-Q下采样的采集中共同恢复了所有扩散加权图像。我们提出了在基于模型的重建中,预先训练的DeNoiser作为常规化器的新颖使用,以恢复高采样不足的数据。具体而言,我们基于多室建模的一般扩散MRI组织微结构模型设计了Denoiser。通过为多室微结构模型使用广泛的生物学上合理的参数值,我们模拟了跨越整个微结构参数空间的扩散信号。使用自动编码器以无监督的方式训练神经网络,以学习扩散MRI信号子空间。我们在基于模型的重建中采用了自动编码器,并表明自动编码器在恢复Q-Space信号之前提供了强大的降解。我们在模拟的大脑数据集上显示了重建结果,该数据集显示了该方法的高加速度功能。
We propose a model-based deep learning architecture for the reconstruction of highly accelerated diffusion magnetic resonance imaging (MRI) that enables high resolution imaging. The proposed reconstruction jointly recovers all the diffusion weighted images in a single step from a joint k-q under-sampled acquisition in a parallel MRI setting. We propose the novel use of a pre-trained denoiser as a regularizer in a model-based reconstruction for the recovery of highly under-sampled data. Specifically, we designed the denoiser based on a general diffusion MRI tissue microstructure model for multi-compartmental modeling. By using a wide range of biologically plausible parameter values for the multi-compartmental microstructure model, we simulated diffusion signal that spans the entire microstructure parameter space. A neural network was trained in an unsupervised manner using an autoencoder to learn the diffusion MRI signal subspace. We employed the autoencoder in a model-based reconstruction and show that the autoencoder provides a strong denoising prior to recover the q-space signal. We show reconstruction results on a simulated brain dataset that shows high acceleration capabilities of the proposed method.