论文标题

伪碘同构的阳性因素化

Positive factorizations of pseudoperiodic homeomorphisms

论文作者

Cuadrado, Pablo Portilla

论文摘要

我们通过证明与较低的霍明态图细菌相关的分离复杂表面奇异性的链接上的单粒链接来概括了表面平滑细菌的经典结果,这是阳性分解的。由于这是Anne Pichon的这些单粒子的拓扑表征,我们得出的结论是,在具有阳性Dehn Twist系数和螺钉数的边界的定向表面上的伪型同构同态,承认了阳性分解。我们使用主要定理为某些具有负螺钉数的伪型同构同构提供充分性标准,以承认阳性分解。

We generalize a classical result concerning smooth germs of surfaces, by proving that monodromies on links of isolated complex surface singularities associated with reduced holomorphic map germs admit a positive factorization. As a consequence of this and a topological characterization of these monodromies by Anne Pichon, we conclude that a pseudoperiodic homeomorphism on an oriented surface with boundary with positive fractional Dehn twist coefficients and screw numbers, admits a positive factorization. We use the main theorem to give a sufficiency criterion for certain pseudoperiodic homeomorphisms with negative screw numbers to admit a positive factorization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源