论文标题
通用Hilfer隐式分数微分方程的非本地边界价值问题
Nonlocal Boundary Value Problem for Generalized Hilfer Implicit Fractional Differential Equations
论文作者
论文摘要
在本文中,我们将等效的分数积分方程得出了涉及$φ$ - hilfer分数衍生物的非线性隐式分数微分方程。解决方案,ULAM-HYERS和ULAM-HYERS-RASSIAS稳定性的存在是通过等效分数积分方程获得的。我们的调查取决于由于Krasnoselskii而引起的固定点定理,而Gronwall不平等涉及$φ$ -RIEMANN--LIOUVILLE分数积分。提供了一个示例来显示主要结果的利用。
In this paper, we derive the equivalent fractional integral equation to the nonlinear implicit fractional differential equations involving $φ$-Hilfer fractional derivative subject to nonlocal fractional integral boundary conditions. The existence of a solution, Ulam-Hyers, and Ulam-Hyers-Rassias stability has been acquired by means equivalent fractional integral equation. Our investigations depend on the fixed point theorem due to Krasnoselskii and the Gronwall inequality involving $φ$-Riemann--Liouville fractional integral. An example is provided to show the utilization of primary outcomes.