论文标题
Interspech 2020深噪声抑制挑战:数据集,主观语音质量和测试框架
The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Speech Quality and Testing Framework
论文作者
论文摘要
Interspeech 2020深噪声抑制挑战旨在促进实时单渠道语音增强的协作研究,旨在最大程度地提高增强语音的主观(感知)质量。评估噪声抑制方法的一种典型方法是在通过拆分原始数据集获得的测试集上使用客观指标。许多出版物报告了与培训集相同的分布中得出的合成测试集的合理性能。但是,模型性能通常会在真实记录上大大降低。同样,大多数常规客观指标与主观测试不太相关,而实验室主观测试对于大型测试集而言无法扩展。在这一挑战中,我们开源一个大量的干净语音和噪音语料库,用于训练抑制噪声模型和代表性的测试集,以对由合成记录和真实记录组成的真实情况。我们还基于ITU-T P.808开源了一个在线主观测试框架,以供研究人员快速测试其发展。该挑战的获奖者将根据使用P.808框架的代表性测试集选择。
The INTERSPEECH 2020 Deep Noise Suppression Challenge is intended to promote collaborative research in real-time single-channel Speech Enhancement aimed to maximize the subjective (perceptual) quality of the enhanced speech. A typical approach to evaluate the noise suppression methods is to use objective metrics on the test set obtained by splitting the original dataset. Many publications report reasonable performance on the synthetic test set drawn from the same distribution as that of the training set. However, often the model performance degrades significantly on real recordings. Also, most of the conventional objective metrics do not correlate well with subjective tests and lab subjective tests are not scalable for a large test set. In this challenge, we open-source a large clean speech and noise corpus for training the noise suppression models and a representative test set to real-world scenarios consisting of both synthetic and real recordings. We also open source an online subjective test framework based on ITU-T P.808 for researchers to quickly test their developments. The winners of this challenge will be selected based on subjective evaluation on a representative test set using P.808 framework.