论文标题
使用堆栈第一种方法检测Planck数据中的异想天开
Detection of WHIM in the Planck data using Stack First approach
论文作者
论文摘要
我们使用依赖于堆叠单个频率图的新方法来检测来自发光红色星系(LRG)对之间的气体丝(LRG)对之间的弥散热Sunyaev-Zeldovich(TSZ)效应。我们在SDSS DR12目录中使用的〜88000 LRG对应用并演示了我们的方法,并选择了改进的选择标准,可确保银河系发射以及来自星系群的TSZ信号的最小污染。我们首先堆叠Planck通道映射,然后执行内部线性组合方法来提取扩散的$ y _ {\ rm sz} $信号。我们的$ stack $ $ pirst $方法使组件分离变得更加容易,因为堆叠极大限度地抑制了噪声和CMB贡献,而灰尘前景在堆叠的斑点上的频谱域变得均匀。因此,将一个组件,即CMB删除,而在应用组件分离算法之前,将其余的前景变得更简单。我们获得$ y _ {\ rm whim} =(3.78 \ pm 0.37)\ times 10^{ - 8} $在气体丝中的偶然信号,占$ \ sim 13 $的电子覆盖。我们估计检测意义为$ \ gtrsim10.2σ$。这种过多的$ y _ {\ rm sz} $信号正在追踪热热的层间介质,它可以解释宇宙中大多数丢失的重子。我们表明,与依靠堆叠$ y $ $ aps检测宇宙学社区当前使用的弱TSZ信号的方法相比,$ stack $ $ $ pirst $ tourt $ tourt $ tourt $ the $ pirst $ tourt $ pirst $ thought $ $ $ $ $ $ $ $。
We detect the diffuse thermal Sunyaev-Zeldovich (tSZ) effect from the gas filaments between the Luminous Red Galaxy (LRG) pairs using a new approach relying on stacking the individual frequency maps. We apply and demonstrate our method on ~88000 LRG pairs in the SDSS DR12 catalogue selected with an improved selection criterion that ensures minimal contamination by the Galactic CO emission as well as the tSZ signal from the clusters of galaxies. We first stack the Planck channel maps and then perform the Internal Linear Combination method to extract the diffuse $y_{\rm sz}$ signal. Our $Stack$ $First$ approach makes the component separation a lot easier as the stacking greatly suppresses the noise and CMB contributions while the dust foreground becomes homogeneous in spectral-domain across the stacked patch. Thus one component, the CMB, is removed while the rest of the foregrounds are made simpler even before component separation algorithm is applied. We obtain the WHIM signal of $y_{\rm whim}=(3.78\pm 0.37)\times 10^{-8}$ in the gas filaments, accounting for the electron overdensity of $\sim 13$. We estimate the detection significance to be $\gtrsim 10.2σ$. This excess $y_{\rm sz}$ signal is tracing the warm-hot intergalactic medium and it could account for most of the missing baryons of the Universe. We show that the $Stack$ $First$ approach is more robust to systematics and produces a cleaner signal compared to the methods relying on stacking the $y$-maps to detect weak tSZ signal currently being used by the cosmology community.