论文标题

$ O(\ log \ log n)$最差的本地解码和更新数据压缩效率

$O(\log \log n)$ Worst-Case Local Decoding and Update Efficiency for Data Compression

论文作者

Vatedka, Shashank, Chandar, Venkat, Tchamkerten, Aslan

论文摘要

本文通过本地解码和本地更新解决了数据压缩问题。压缩方案具有最差的本地解码$ d_ {wc} $,如果可以通过最多探测压缩顺序的$ d_ {wc} $位来恢复任何原始文件,并且如果可以通过在最多的$ u_ u__} $上进行修改,则可以通过修改单个原始文件来更新一个原始文件的更新效率。本文为无内存来源提供了一个熵调整的压缩方案,该方案同时实现了$ O(\ log \ log n)$本地解码和更新效率。这种可实现结果的关键是稀疏序列的新型简洁数据结构,该数据结构允许有效的本地解码和本地更新。在本地解码器和更新算法上的一般假设下,相反的结果表明$ d_ {wc} $和$ u_ {wc} $必须成长为$ω(\ log log \ log \ log n)$。

This paper addresses the problem of data compression with local decoding and local update. A compression scheme has worst-case local decoding $d_{wc}$ if any bit of the raw file can be recovered by probing at most $d_{wc}$ bits of the compressed sequence, and has update efficiency of $u_{wc}$ if a single bit of the raw file can be updated by modifying at most $u_{wc}$ bits of the compressed sequence. This article provides an entropy-achieving compression scheme for memoryless sources that simultaneously achieves $ O(\log\log n) $ local decoding and update efficiency. Key to this achievability result is a novel succinct data structure for sparse sequences which allows efficient local decoding and local update. Under general assumptions on the local decoder and update algorithms, a converse result shows that $d_{wc}$ and $u_{wc}$ must grow as $ Ω(\log\log n) $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源