论文标题

跨语言知识图对齐的协调推理

Coordinated Reasoning for Cross-Lingual Knowledge Graph Alignment

论文作者

Xu, Kun, Song, Linfeng, Feng, Yansong, Song, Yan, Yu, Dong

论文摘要

现有的实体对齐方法主要在编码知识图的选择上有所不同,但是它们通常使用相同的解码方法,该方法独立选择每个源实体的本地最佳匹配。这种解码方法不仅可能导致“多一对一”问题,而且还忽略了该任务的协调性质,即每个对齐决定可能与其他决策高度相关。在本文中,我们介绍了两种协调的推理方法,即易于硬的解码策略和联合实体一致性算法。具体而言,易于匹配的策略首先从预测的结果中检索模型对齐的一致性,然后将它们作为额外的知识纳入,以解决其余的模型 - 不确定对齐。为了实现这一目标,我们进一步提出了一个基于当前最新基线的增强对齐模型。此外,为了解决多对一问题,我们建议共同预测实体对准,以便可以自然地将一对一的约束纳入对齐预测中。实验结果表明,我们的模型实现了最先进的性能,我们的推理方法也可以显着改善现有基准。

Existing entity alignment methods mainly vary on the choices of encoding the knowledge graph, but they typically use the same decoding method, which independently chooses the local optimal match for each source entity. This decoding method may not only cause the "many-to-one" problem but also neglect the coordinated nature of this task, that is, each alignment decision may highly correlate to the other decisions. In this paper, we introduce two coordinated reasoning methods, i.e., the Easy-to-Hard decoding strategy and joint entity alignment algorithm. Specifically, the Easy-to-Hard strategy first retrieves the model-confident alignments from the predicted results and then incorporates them as additional knowledge to resolve the remaining model-uncertain alignments. To achieve this, we further propose an enhanced alignment model that is built on the current state-of-the-art baseline. In addition, to address the many-to-one problem, we propose to jointly predict entity alignments so that the one-to-one constraint can be naturally incorporated into the alignment prediction. Experimental results show that our model achieves the state-of-the-art performance and our reasoning methods can also significantly improve existing baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源