论文标题

无监督的学习方法用于离散和连续变化的环境中的视觉位置识别

Unsupervised Learning Methods for Visual Place Recognition in Discretely and Continuously Changing Environments

论文作者

Schubert, Stefan, Neubert, Peer, Protzel, Peter

论文摘要

在不断变化的环境中,视觉位置识别是在两组观测值之间找到匹配的问题,尽管出现了严重的外观,但仍有一个查询集和一个参考集。最近,使用基于CNN的描述符的图像比较显示出非常有希望的结果。但是,文献中现有的实验通常假设每组中都有一个独特的条件(例如,参考:日,查询:夜)。我们证明,一组条件在一组内发生变化(例如,参考:日,查询:遍历白天 - 夜至夜至周日),在相同条件下的不同位置可能会突然看起来比在不同条件和基于CNN基于CNN的描述符(例如基于CNN的描述符)失败的情况下看起来更相似。本文讨论了序列条件变化的实际上非常重要的问题,并定义了问题设置的层次结构(1)没有序列变化,(2)离散的序列变化,到(3)连续的序列变化。我们将通过实验评估这些变化对两个最先进的CNN描述符的影响。我们的实验强调了描述符统计标准化的重要性,并在不断变化的情况下显示出其局限性。为了解决这种实际上最相关的设置,我们使用两种可用的基于PCA的方法研究并实验评估了无监督学习方法的应用,并提出了基于统计归一化的基于新颖的基于聚类的扩展。

Visual place recognition in changing environments is the problem of finding matchings between two sets of observations, a query set and a reference set, despite severe appearance changes. Recently, image comparison using CNN-based descriptors showed very promising results. However, existing experiments from the literature typically assume a single distinctive condition within each set (e.g., reference: day, query: night). We demonstrate that as soon as the conditions change within one set (e.g., reference: day, query: traversal daytime-dusk-night-dawn), different places under the same condition can suddenly look more similar than same places under different conditions and state-of-the-art approaches like CNN-based descriptors fail. This paper discusses this practically very important problem of in-sequence condition changes and defines a hierarchy of problem setups from (1) no in-sequence changes, (2) discrete in-sequence changes, to (3) continuous in-sequence changes. We will experimentally evaluate the effect of these changes on two state-of-the-art CNN-descriptors. Our experiments emphasize the importance of statistical standardization of descriptors and shows its limitations in case of continuous changes. To address this practically most relevant setup, we investigate and experimentally evaluate the application of unsupervised learning methods using two available PCA-based approaches and propose a novel clustering-based extension of the statistical normalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源