论文标题

通过概率速度障碍的希尔伯特空间嵌入非参数不确定性下的反应性导航

Reactive Navigation under Non-Parametric Uncertainty through Hilbert Space Embedding of Probabilistic Velocity Obstacles

论文作者

Jyotish, P. S. Naga, Gopalakrishnan, Bharath, Kumar, A. V. S. Sai Bhargav, Singh, Arun Kumar, Krishna, K. Madhava, Manocha, Dinesh

论文摘要

概率速度障碍物(PVO)将速度障碍物(VO)的概念扩展到在不确定的动态环境中起作用。在本文中,我们展示了如何在非参数不确定性下具有PVO约束的鲁棒模型预测控制(MPC)。我们配方的核心是对我们可靠的MPC的一种新颖而简单的解释,即将PVO与一定所需的分布相匹配的问题。为此,我们提出了两种方法。我们的第一个基线方法是基于使用高斯混合模型(GMM)近似PVO的分布,并随后使用Kullback Leibler(KL)Divergence Metric执行分布匹配。我们的第二个公式是基于代表任意分布作为再现内核希尔伯特空间(RKHS)的功能的可能性。我们使用此基础来将强大的MPC解释为最小化所需分布与PVO分布之间的距离的问题。 RKHS和基于GMM的公式都可以与任何不确定性分布一起使用,从而使我们可以放松现有作品中普遍的高斯假设。我们通过以逼真的噪声模型进行感知和自我运动不确定性的2D导航示例来验证我们的公式。特别是,我们提出了GMM和RKHS方法之间的系统比较,并表明,尽管两种方法都可以产生安全的轨迹,但前者是高度保守的,并且导致跟踪和控制成本不佳。此外,基于RKHS的方法给出的计算时间比基于GMM的方法的计算时间少一个数量级。

The probabilistic velocity obstacle (PVO) extends the concept of velocity obstacle (VO) to work in uncertain dynamic environments. In this paper, we show how a robust model predictive control (MPC) with PVO constraints under non-parametric uncertainty can be made computationally tractable. At the core of our formulation is a novel yet simple interpretation of our robust MPC as a problem of matching the distribution of PVO with a certain desired distribution. To this end, we propose two methods. Our first baseline method is based on approximating the distribution of PVO with a Gaussian Mixture Model (GMM) and subsequently performing distribution matching using Kullback Leibler (KL) divergence metric. Our second formulation is based on the possibility of representing arbitrary distributions as functions in Reproducing Kernel Hilbert Space (RKHS). We use this foundation to interpret our robust MPC as a problem of minimizing the distance between the desired distribution and the distribution of the PVO in the RKHS. Both the RKHS and GMM based formulation can work with any uncertainty distribution and thus allowing us to relax the prevalent Gaussian assumption in the existing works. We validate our formulation by taking an example of 2D navigation of quadrotors with a realistic noise model for perception and ego-motion uncertainty. In particular, we present a systematic comparison between the GMM and the RKHS approach and show that while both approaches can produce safe trajectories, the former is highly conservative and leads to poor tracking and control costs. Furthermore, RKHS based approach gives better computational times that are up to one order of magnitude lesser than the computation time of the GMM based approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源