论文标题
有限组的$σ$ -Arithmetic图
On $σ$-arithmetic graphs of finite groups
论文作者
论文摘要
让$ g $为有限的群体,而$σ$ a的分区? Primes $ \ bbb {p} $,也就是说,$σ= \ {σ_i\ mid i \ in I \} $,其中$ \ bbb {p} = \ bigCup_ {i \ in I}σ_i$ and un和$σ_i\capσ_jj= $ j $ y $如果$ n $是整数,我们写$σ(n)= \ {σ_i\midσ_{i} \capπ(n)\ ne \ ne \ emptyset \} $和$σ(g)=σ(| g |)$。我们将所有顶点$ v(γ)=σ(g)$($ g \ ne 1 $)的集合$γ$称为图形$γ$,$ g $的$σ$ -Arithmetic图,我们与$ g \ ne 1 $ 1 $相关联,以下三个指导$σ$σ$ - arithmetic graphs:( $σ$ -ARITHMETIC图$ g $中的$(σ_i,σ_j)\在e(γ_{Hσ}(g))中$如果$σ_j\ inσ(g/f _ {\ {\ {σ_i\}}}(g)(g)(g)(g)(g)(g))$; (2)$σ$ -HALL图$γ_{σhal}(g)$ g $的$(c $σ_i$ -cument $ -subgroup $ -subgroup $ h $ g $ $ g $ n o $ g $ $ g $ n e(γ_i{σhal}(g))$(σ_i,σ_j)\ in E(γ_{σhal}(g))$ σ(n_ {g}(h)/hc_ {g}(h))$; (3)$σ$ -VASIL'EV-MURASHKO图$γ_ {{{\ Mathfrak {n}_σ}}}}}}(g)$ g $ of $ g $,其中$(σ_i,σ_j) $ {\ mathfrak {n} _ {σ}} $ - 关键子组$ h $的$ g $我们有$σ_i\ inσ(h)$和$σ_j\ inσ(h/f _ {\ {\ {σ_i\}}(h))$。在本文中,我们研究了$ g $的结构,具体取决于这三个图的$ g $的属性。
Let $G$ be a finite group and $σ$ a partition of the set of all? primes $\Bbb{P}$, that is, $σ=\{σ_i \mid i\in I \}$, where $\Bbb{P}=\bigcup_{i\in I} σ_i$ and $σ_i\cap σ_j= \emptyset $ for all $i\ne j$. If $n$ is an integer, we write $σ(n)=\{σ_i \mid σ_{i}\cap π(n)\ne \emptyset \}$ and $σ(G)=σ(|G|)$. We call a graph $Γ$ with the set of all vertices $V(Γ)=σ(G)$ ($G\ne 1$) a $σ$-arithmetic graph of $G$, and we associate with $G\ne 1$ the following three directed $σ$-arithmetic graphs: (1) the $σ$-Hawkes graph $Γ_{Hσ}(G)$ of $G$ is a $σ$-arithmetic graph of $G$ in which $(σ_i, σ_j)\in E(Γ_{Hσ}(G))$ if $σ_j\in σ(G/F_{\{σ_i\}}(G))$; (2) the $σ$-Hall graph $Γ_{σHal}(G)$ of $G$ in which $(σ_i, σ_j)\in E(Γ_{σHal}(G))$ if for some Hall $σ_i$-subgroup $H$ of $G$ we have $σ_j\in σ(N_{G}(H)/HC_{G}(H))$; (3) the $σ$-Vasil'ev-Murashko graph $Γ_{{\mathfrak{N}_σ}}(G)$ of $G$ in which $(σ_i, σ_j)\in E(Γ_{{\mathfrak{N}_σ}}(G))$ if for some ${\mathfrak{N}_{σ}}$-critical subgroup $H$ of $G$ we have $σ_i \in σ(H)$ and $σ_j\in σ(H/F_{\{σ_i\}}(H))$. In this paper, we study the structure of $G$ depending on the properties of these three graphs of $G$.