论文标题

通过浅协方差内核进行认证和快速计算

Certified and fast computations with shallow covariance kernels

论文作者

Kressner, Daniel, Latz, Jonas, Massei, Stefano, Ullmann, Elisabeth

论文摘要

数据科学和不确定性量化的许多技术需要有效的工具来处理高斯随机字段,这些工具是根据其平均功能和协方差运算符定义的。最近,由于其灵活性较高,参数化的高斯随机场受到了越来越多的关注。但是,尤其是如果随机字段通过其协方差操作员参数化,则经典的随机场离散技术失败或效率低下。在这项工作中,我们介绍和分析了一种新的且经过认证的算法,用于对协方差算子的参数化家族的低级别近似,该算法代表了自适应交叉近似方法的扩展,用于对称阳性确定矩阵。该算法依赖于协方差算子相对于参数的仿射线性扩展,该参数需要在使用经验插值方法的预处理步骤中计算。我们讨论并测试了我们的各向同性协方差内核的新方法,例如Matérn内核。数值结果证明了我们方法在计算时间方面的优势,并确认所提出的算法为参数依赖性高斯随机字段提供了快速采样程序的基础。

Many techniques for data science and uncertainty quantification demand efficient tools to handle Gaussian random fields, which are defined in terms of their mean functions and covariance operators. Recently, parameterized Gaussian random fields have gained increased attention, due to their higher degree of flexibility. However, especially if the random field is parameterized through its covariance operator, classical random field discretization techniques fail or become inefficient. In this work we introduce and analyze a new and certified algorithm for the low-rank approximation of a parameterized family of covariance operators which represents an extension of the adaptive cross approximation method for symmetric positive definite matrices. The algorithm relies on an affine linear expansion of the covariance operator with respect to the parameters, which needs to be computed in a preprocessing step using, e.g., the empirical interpolation method. We discuss and test our new approach for isotropic covariance kernels, such as Matérn kernels. The numerical results demonstrate the advantages of our approach in terms of computational time and confirm that the proposed algorithm provides the basis of a fast sampling procedure for parameter dependent Gaussian random fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源