论文标题
异质域的扩散合成加速度,与空隙兼容
Diffusion synthetic acceleration for heterogeneous domains, compatible with voids
论文作者
论文摘要
解决S $ _n $传输方程的标准方法是使用扩散合成加速度(DSA)的源迭代。尽管这种方法在许多问题上被广泛使用且有效,但DSA预处理仍然存在一些实际问题,尤其是在高度异质的领域上。对于大规模平行模拟,至关重要的是,(i)预处理源迭代迅速收敛,并且(ii)可以使用快速,可扩展的求解器(例如代数Multigrid(AMG))应用DSA预处理器的作用。对于异质域,这两个兴趣可能是矛盾的。特别是,存在DSA扩散离散化,可以使用AMG快速求解,但是它们并不总是产生较大源迭代的强大/快速收敛性。相反,存在强大的DSA离散化,其中源迭代在困难的异质问题上迅速收敛,但是像AMG这样的快速平行求解器往往很难应用此类操作员的作用。此外,很少有用于确定性运输解决方案的当前方法与空隙兼容。本文仅基于对光学较厚的子域而开发了新的异质DSA预处理。所得的方法证明了各种异质运输问题的坚固耐用性,包括与惯性限制融合有关的线性化hohlraum网格。此外,使用$ \ MATHCAL {O}(1)$ AMG迭代轻松计算了预处理的动作,{运输迭代的收敛通常需要$ 2-5 \ tims $ $迭代少于当前最先进的````完整的dsa'',并且提议的方法与拟议的方法} trivection n and'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''关于Hohlraum问题,通过少于3 \%的网格元素($ 5-10 $ AMG迭代)进行快速收敛。
A standard approach to solving the S$_N$ transport equations is to use source iteration with diffusion synthetic acceleration (DSA). Although this approach is widely used and effective on many problems, there remain some practical issues with DSA preconditioning, particularly on highly heterogeneous domains. For large-scale parallel simulation, it is critical that both (i) preconditioned source iteration converges rapidly, and (ii) the action of the DSA preconditioner can be applied using fast, scalable solvers, such as algebraic multigrid (AMG). For heterogeneous domains, these two interests can be at odds. In particular, there exist DSA diffusion discretizations that can be solved rapidly using AMG, but they do not always yield robust/fast convergence of the larger source iteration. Conversely, there exist robust DSA discretizations where source iteration converges rapidly on difficult heterogeneous problems, but fast parallel solvers like AMG tend to struggle applying the action of such operators. Moreover, very few current methods for the solution of deterministic transport are compatible with voids. This paper develops a new heterogeneous DSA preconditioner based on only preconditioning the optically thick subdomains. The resulting method proves robust on a variety of heterogeneous transport problems, including a linearized hohlraum mesh related to inertial confinement fusion. Moreover, the action of the preconditioner is easily computed using $\mathcal{O}(1)$ AMG iterations, {convergence of the transport iteration typically requires $2-5\times$ less iterations than current state-of-the-art ``full DSA,'' and the proposed method is} trivially compatible with voids. On the hohlraum problem, rapid convergence is obtained by preconditioning less than 3\% of the mesh elements with $5-10$ AMG iterations.